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SUBMARINE DYNAMICS MODEL

 INTRODUCTION

When a submarine is deeply submerged, many of its maneuvering characteristics can

be determined from application of Morison’s equation to model test data.  A series of trials,

often done with a planar motion mechanism (PMM), give the damping and inertia

coefficients for small maneuvers in each of the six degrees of freedom.  This method is not

without limits.  For trials done in the horizontal and vertical planes only, nonlinear cross

coupling effects are ignored.  The hydrodynamic coefficients work poorly for prediction of

high speed maneuvers and control surface casualties.  Here the large crossflow velocities,

vortex hull interaction, and flow separation all have effects which are not predicted by the

hydrodynamic coefficients.  It is possible, however, to include some of these effects as

additional nonlinear terms.

As the submarine approaches the free surface, several complexities are introduced

into the hydrodynamic coefficient approach.  First, the inertia terms change as an

acceleration will no longer act upon an effectively infinite region.  Second, an inviscid form

of damping exists near the free surface.  This comes about from the generation of waves by

the body, and depends on the body depth and character of motion.  Finally, the interaction

between the incident waves and the submarine introduces added forces and moments.

These effects combine to make designing for periscope depth vexing for engineers and

operating at periscope depth an art for the ship’s crew.

The approach in this thesis will be to first establish a dynamics model appropriate

for a deeply submerged submarine at low to moderate speeds.  The forces and moments

resulting from the seaway will then be superimposed on this model to provide a reasonable

approximation to the  submarine motion beneath waves.

DEEPLY SUBMERGED EQUATIONS OF MOTION

Definition of coordinate system and states

The coordinate system defined in Figure 1 will be used.  The origin of the global

coordinate system is fixed at the ocean surface.  The z axis is positive downward, towards

the ocean bottom.  The x axis is positive in the direction of intended submarine motion.

The body fixed coordinates are rotated from the global coordinates by the angle .  Body
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fixed velocities w (heave) , u (surge), and q (pitch) are shown.  The control surface

deflections, b  (bow planes) and s  (stern planes) are also defined.

Figure 1.  Coordinate System Definition

Hydrodynamic coefficients review

For a deeply submerged submarine, small motions can be analyzed using the

concept of hydrodynamic coefficients.   These represent a Taylor series expansion of the

functional relationship between body movements and the resulting fluid forces.  For

example, given the deeply submerged body in Figure 2 undergoing pure heave, resulting

body forces can be expressed in the following manner:
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Figure 2.  Submerged body in pure heave

M M w M ww M ww w w w= + + (1)

Z Z w Z ww Z ww w w w= + + (2)

This method is extended to the six degrees of freedom of the body, and done for

velocity and acceleration components of the movement.  This includes representations of

added mass, viscous drag, and square law drag.

Vertical plane equations of  motion

By using this system of notation, and applying Newton’s second law to the body

fixed coordinates, and transforming to global coordinates, the equations of pitch and heave

may be obtained in the vertical plane.  The general case is quite complex, having centers of

mass and buoyancy that are separate from each other and the coordinate system origin.

This, along with cross coupled hydrodynamic coefficients, results in a nonlinear, coupled set

of differential equations.

These equations of pitch and heave may be simplified considerably by several

reasonable assumptions.  Assuming that the submarine motion is constrained to the vertical

plane, the equations of motion for heave and pitch are (Smith, Crane, and Summey (1978)):
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It is apparent that Equations (3) and (4) are nonlinear, coupled differential equations

in w and q and u.  To reduce this coupling, terms involving the derivatives of w and q can be

collected, resulting in a mass matrix.
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The mass matrix can be readily inverted:

M

I M Z
M m Z

m Z I M Z M

y q q

w w

w y q q w

− =

−
−











− − −
1

( )( )

(6)

By applying  Equation (6), the cross coupling of terms in w and q can be removed

from Equations (3) and (4).  To allow the introduction of external forces and moments, the

system was augmented by force and moment disturbances acting at the origin of the body

fixed coordinates. They were multiplied by the cosine of the pitch angle for conversion to

the body fixed coordinate system.  These disturbances can be used to input external effects,

such as changes in trim and wave forces.  By further assuming that the center of buoyancy is

at the body fixed coordinate system origin, the center of mass is directly below, and that the

forward speed u is constant, the equations of motion can be reduced to the following:
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where:
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Equations (7) through (11) are the governing equations of motion for this thesis.  It

is of note that the disturbance force and moment terms represent accelerations due to the

disturbances.  To provide ease of use, the equations of motion were implemented in the

SIMULINK® model shown in Figure 3.   This building block approach was very effective

for conducting studies on the effectiveness of different types of controllers.

Figure 3.  SIMULINK®  model of vertical plane submarine dynamics

For control design, it is convenient to use a linear state space representation of the

system.  This allows the use of a variety of controller design tools including pole placement

and linear quadratic regulator algorithms.  Equations (7) through (11) can be linearized

about a level flight condition.  This results in the linear state space representation:

w a uw a uq a b u b u Fb s d= + + + + +11 12 13 11
2
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2

22
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= q (14)

z w u= − (15)

x w u= + (16)
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Equations (12) through (15) can be rewritten in matrix form.  This form of the

linear submarine vertical plane dynamics equations will be used for controller design.  For

controller design,  Equation (16) was excluded from the matrix form.  Because of the

constant forward speed u  assumption, there was no direct means of control for x.
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EXTENSION TO VERTICAL PLANE PATHKEEPING

Equations (7) through (10) and the corresponding  SIMULINK®  model are

linearized around a constant commanded depth, or level flight.  They can be extended to a

two dimensional pathkeeping simulation by a coordinate transformation. After coordinate

rotation by an angle β (positive in the same direction as ), the resulting system is:

sin( )w a uw a uq a b u Fd= + + ′ ′ + + ′
11 12 13 1

2 (18)

sin( )q a uw a uq a b u Md= + + ′ ′ + + ′
21 22 23 2

2 (19)

′ = q (20)

cos( ) sin( )′ = ′ − ′z w u (21)

sin( ) cos( )′ = ′ + ′x w u (22)

where:

'= − (23)

x z x' sin( ) cos( )= − + (24)

′ = +z z xcos( ) sin( ) (25)

a a13 13
′ = cos( ) (26)

a a23 23
′ = cos( ) (27)
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F F ad d
′ = + ′13 cos( )sin( ) (28)

M M ad d
′ = + ′23 cos( )sin( ) (29)

If the expected angular deviation from the planned path is small,  Equations (28)

and (29) can be simplified by assuming that cos( )′  is equal to one.  Then the rotated

equation set, Equations (18) through (22), is identical in form to Equations (7) through (11).

Equations (23) through (29) allow any vertical plane path consisting of a series of

straight line segments to be simulated one segment at a time.

THE DARPA SUBOFF

Background

For the purpose of this work, it was desired to have a vertical plane model of

submarine dynamics which would give a similar response to a modern fast attack nuclear

submarine (SSN).  Several sets of unclassified hydrodynamic coefficients were available,

these being for the swimmer delivery vehicle (SDV) detailed in Smith, Crane, and Summey

(1978) and for the DARPA SUBOFF model detailed in Roddy (1990).

The SDV had a very complete set of hydrodynamic coefficients which have been

used in a large number of Autonomous Underwater Vehicle (AUV) research projects.

Among these is the Naval Postgraduate School (NPS) AUV sliding mode controller,

Hawkinson (1990).  Despite these advantages, the SDV hydrodynamic coefficients were not

used because the wing like hull of the SDV bore little resemblance to an axisymetric

submarine hull.

The SUBOFF hydrodynamic coefficients detailed in Roddy (1990) lacked some of

the cross coupling coefficients.  The documentation also lacked details on the models

metacentric height.  Because the SUBOFF represented a submarine hull form and most of

the vertical plane coefficients and parameters were available, it was chosen as the model for

this thesis.
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SUBOFF known parameters and coefficients

The SUBOFF was developed to allow comparison between flow field predictions

and model test data (Roddy, 1990).  The available coefficients were based on planar motion

mechanism tests conducted on the model.

Because the aim of the study was to examine full scale submarine motions, the

model and its hydrodynamic coefficients were scaled to a length of 300 feet.  After scaling,

several parameters had to be modified or assumed to give control and response comparable

to a modern fast attack submarine.   The force coefficients of the stern planes was doubled

to provide a more realistic level force.  Bow planes were assumed to have one half the force

and one quarter the moment authority of the stern planes.  Finally, a metacentric height of

one foot was assumed, as it provided a realistic point of stern planes reversal.  The resulting

parameters are shown in Table 1.

CONCLUDING REMARKS

A simplified model of submarine vertical plane dynamics was derived.  The

coefficients for use in this model were obtained from the DARPA SUBOFF model, which

is a representative axisymetric submarine hull form.  The simplified nonlinear equations of

Parameter SUBOFF Model Scaled / Modified Result

Length (Feet) 14.2917 300

Displacement (tons) 0.7704 7,7145

Maximum Diameter (Feet) 1.667 35

Metacentric Height (Feet) Not Provided 1

XG 0.00975 0

ZG Not Provided 1

XB -0.006669 0

ZB Not Provided 0

′Z
s

-0.005603 -0.011206

′M
s

-0.002409 -0.004818

′Z
b

Not Provided -0.005603

′M
b

Not Provided 0.0012045

Table 1.  SUBOFF Assumed and modified parameters
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motion were incorporated in a SIMULINK®  model to allow easy integration with wave

force models and different controllers.
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Figure 4.  DARPA SUBOFF model, Roddy (1990)
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